

Synthesis of tricyclic compounds with a four-coordinate boron atom from 2-aminobenzazoles and nitriles

A. R. Amamchyan, A. V. Vasil'ev, Z. K. Dem'yanets, and V. A. Dorokhov *

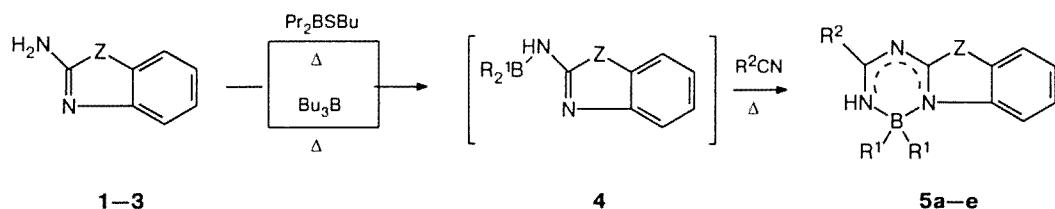
*N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,
47 Leninsky prosp., 117913 Moscow, Russian Federation.
Fax: +7 (095) 135 5328. E-mail: L480@SUEARN2.BITNET*

The reactions of 2-aminobenzazoles with nitriles in the presence of organoboranes result in the formation of novel tricyclic chelate boron compounds with *N*-(benzazol-2-yl)amidines as ligands. *N*-(Benzothiazol-2-yl)-*p*-chlorobenzamidine was prepared from 2-amino-benzothiazole and *p*-chlorobenzonitrile *via* the corresponding chelate.

Key words: 2-aminobenzimidazole, 2-amino-1-methylbenzimidazole, 2-aminobenzothiazole, boron chelates, borylation, *N*-(benzothiazol-2-yl)-*p*-chlorobenzamidine.

The borylation of α -amino-*N*-heterocycles increases substantially the synthetic potential of these reagents.^{1,2} In particular, it has been shown that dialkylboryl derivatives of 2-aminothiazole, 5-amino-1,2,4-triazole, and 5-aminotetrazole can add to nonactivated nitriles to give chelate boron complexes in which the corresponding heterylamidines in the deprotonated form serve as ligands.³⁻⁵ In the present work, the reaction of 2-amino-benzazoles and nitriles with the application of the borylation methodology is considered.

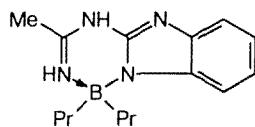
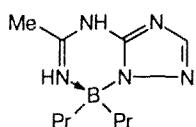
It is established that heating of 2-aminobenzimidazoles (**1**, **2**) or 2-aminobenzothiazole (**3**) with butylthiodipropylborane in excess acetonitrile results in high yields of cyclic compounds of four-coordinate boron (**5a–c**), *i.e.*, chelate complexes in which deprotonated *N*-(benzimidazol-2-yl)- or *N*-(benzothiazol-2-yl)amidines are the ligands (Scheme 1). Trialkylboranes can also be used as borylating agents. For example, the reaction of **3** with Bu_3B in the presence of an excess of the corresponding nitrile gives chelates (**5d,e**).


The process presented in Scheme 1 includes, evidently, the formation of dialkylboryl derivatives of amine

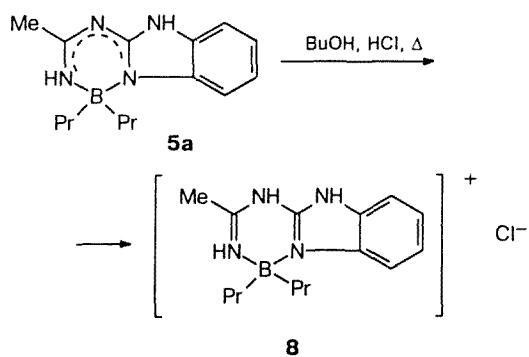
nobenzazoles of the type of **4** and their addition to the C≡N bond of nitriles (cf. the data on the reactions of amidines with nitriles in the presence of organoboranes⁶). The specific feature of the transformations described is that the borylated azoles are obtained *in situ*, and the ligand is formed directly in the synthesis of the chelate.

The structure of tricyclic compounds **5a–e** is confirmed by the spectral data. Their mass spectra are typical of dialkylboron chelates⁷: peaks of the ions $[M]^+$ are almost absent, and the peaks of $[M-R^1]^+$ are the most abundant. The ^{11}B NMR spectra of complexes **5a–e** exhibit the high-field signals (−4.9 to 1.6 ppm), which is characteristic of four-coordinate boron compounds. The intense absorption in the region of 1520–1590 cm^{-1} in the IR spectra of solutions of compounds **5a–e** in CHCl_3 indicates the existence of a delocalized π -electron system in the boron-containing ring.

It was necessary to take into account that the chelate obtained from nonsubstituted 2-aminobenzimidazole can exist in the tautomeric form (6). In fact, the complexes that, according to the X-ray diffraction data,⁴ have the structure 7 have been obtained previously from 5-amino-1,2,4-triazole. However, the tautomeric structure of the



Scheme 1

$Z = \text{NH}$ (**1**), NMe (**2**), S (**3**)


$R^1 = \text{Pr}$, $R^2 = \text{Me}$, $Z = \text{NH}$ (**5a**), NMe (**5b**), S (**5c**);
 $Z = \text{S}$, $R^1 = \text{Bu}$, $R^2 = \text{Me}$ (**5d**), $p\text{-ClC}_6\text{H}_4$ (**5e**)

type **6** is impossible for compound **5b** synthesized from **2**. At the same time, the similarity of the IR and ¹H NMR spectra of **5b** and the chelate obtained from **1** indicates that the latter has the structure **5a**.

6**7**

Compounds **5a–d** are colorless crystalline substances, and crystals of **5e** are bright-yellow. They are soluble in most of organic solvents. It is known that boron chelates with the delocalized π -electron system are distinguished by their high stability.³ In fact, complexes **5** do not decompose upon long exposure in air, and some of them do not decompose even under the action of HCl in butanol. For example, heating of **5a** in a 6 M solution of HCl in BuOH results only in the formation of salt (**8**) in a yield of 95 % (Scheme 2).

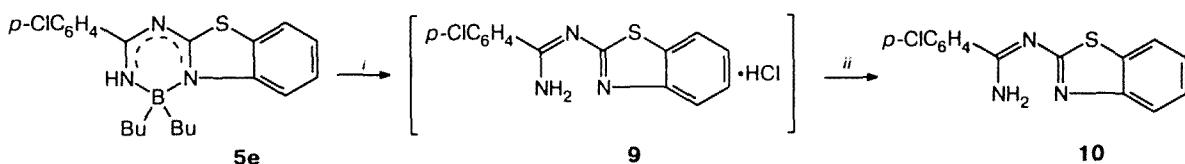
Scheme 2

However, the action of a solution of HCl in BuOH on complex **5e** resulted in the formation of *N*-(benzothiazol-2-yl)-*p*-chlorobenzamidine hydrochloride (**9**), which was treated with NaHCO₃ to give a hitherto unknown amidine (**10**) in a yield of 85 % (Scheme 3).

The lowered stability of **5e** is probably caused by the weakening of the coordination interaction of the boron

atom with the ligand, which evidently possesses a lower basicity than the corresponding acetamidines in **5a–d**.

Amidine **10** is moderately soluble in the majority of organic solvents. Its structure is confirmed by the spectral data. In the mass spectrum of **10**, the peak of [M–H]⁺ is the most abundant (*cf.* the fragmentation of *N*-(1,2,4-triazol-5-yl)- and *N*-(tetrazol-5-yl)amidines^{8,9}). The IR spectrum of a solution of **10** in CHCl₃ contains an intense absorption band in the region of 1630 cm^{−1} (vC=N), and the narrow band at 3490 cm^{−1} (NH free) and the broad band at 3140–3500 cm^{−1} (NH bound) correspond to the vibrations of the NH₂ group, which indicates the existence of an intramolecular hydrogen bond in the molecule of **10**.


Experimental

All operations with the original organoboranes were performed in an atmosphere of dry argon. Mass spectra were recorded on a Varian MAT-311 instrument with direct inlet of samples into the ion source at 100–150 °C. IR spectra were recorded on a Perkin Elmer-577 instrument in CHCl₃. ¹H NMR spectra were recorded on a Bruker WM-250 instrument, and ¹¹B NMR spectra were recorded in CHCl₃ on a Bruker AM-300 instrument. Elemental analyses were performed in the Laboratory of Microanalysis (N. D. Zelinsky Institute of Organic Chemistry of the RAS).

[*N*-(Benzimidazol-2-yl)acetamidinato]dipropylboron (5a). A mixture of 2-aminobenzimidazole **1** (0.266 g), Pr₂BSBu (0.372 g), and MeCN (5 mL) were boiled for 1.5 h. The solvent was distilled off, and the residue was washed with hexane, dried, and recrystallized from benzene. Compound **5a** (0.373 g, 69 %) was obtained, m.p. 206–208 °C. Found (%): C, 66.40; H, 8.66; B, 4.30; N, 20.40. C₁₅H₂₃BN₄. Calculated (%): C, 66.62; H, 8.58; B, 4.07; N, 20.73. MS, *m/z*: 227 [M–Pr]⁺. IR, ν/cm^{-1} : 3410 (NH); 1630, 1590, 1555, 1525 (C=C, C=N). ¹¹B NMR, δ : −1.8. ¹H NMR (CDCl₃), δ : 7.58–7.18 (m, 4 H arom.); 5.64 (s, NH); 2.40 (s, Me); 1.33–0.35 (m, 2 Pr).

[*N*-(1-Methylbenzimidazol-2-yl)acetamidinato]dipropylboron (5b) was obtained similarly to **5a** from 2-amino-1-methylbenzimidazole **2** (0.294 g), Pr₂BSBu (0.372 g), and MeCN (5 mL). Yield of **5b** was 0.454 g (80 %), m.p. 136–137 °C (from MeCN). Found (%): C, 68.01; H, 9.05; B, 4.04; N, 20.20. C₁₆H₂₅BN₄. Calculated (%): C, 67.55; H, 8.86; B, 3.87; N, 19.71. MS, *m/z*: 241 [M–Pr]⁺. IR, ν/cm^{-1} : 3410 (NH); 1625, 1575, 1520, 1480 (C=C, C=N). ¹¹B NMR, δ : −4.9. ¹H NMR (CDCl₃), δ : 7.52–7.14 (m, 4 H arom.); 5.50 (s, NH); 3.65 (s, NMe); 2.20 (s, CMe); 1.28–0.28 (m, 2 Pr).

Scheme 3

Reagents and conditions: *i*. BuOH, HCl, Δ ; *ii*. NaHCO₃.

[N-(Benzothiazol-2-yl)acetamidinato]dipropylboron (5c) was obtained similarly to **5a** from 2-aminobenzothiazole **3** (0.3 g), Pr_2BSBu (0.372 g), and MeCN (5 mL). Yield of **5c** was 0.492 g (84 %), m.p. 145–148 °C (from MeCN). Found (%): C, 62.71; H, 7.47; B, 3.57; N, 14.74; S, 11.41. $\text{C}_{15}\text{H}_{22}\text{BN}_3\text{S}$. Calculated (%): C, 62.68; H, 7.72; B, 3.88; N, 14.63; S, 11.13. MS, m/z : 244 [M–Pr]⁺. IR, ν/cm^{-1} : 3400 (NH); 1580, 1495, 1445 (C=C, C=N). ¹¹B NMR, δ : 1.3. ¹H NMR (CDCl_3), δ : 7.79–7.22 (m, 4 H arom.); 5.80 (s, NH); 2.18 (s, Me); 1.34–0.25 (m, 2 Pr).

[N-(Benzothiazol-2-yl)acetamidinato]dibutylboron (5d) was obtained similarly to **5a** from 2-aminobenzothiazole **3** (0.37 g), Bu_3B (0.45 g), and MeCN (5 mL). Yield of **5d** was 0.46 g (73 %), m.p. 153–154 °C (from MeCN). Found (%): C, 64.77; H, 8.34; B, 3.42; S, 10.09. $\text{C}_{17}\text{H}_{26}\text{BN}_3\text{S}$. Calculated (%): C, 64.72; H, 8.31; B, 3.49; N, 13.33; S, 10.14. MS, m/z : 258 [M–Bu]⁺. IR, ν/cm^{-1} : 3400 (NH); 1570, 1500 (C=C, C=N). ¹¹B NMR, δ : 1.68. ¹H NMR [$(\text{CD}_3)_2\text{SO}$], δ : 8.38 (s, NH); 7.78–7.22 (m, 4 H arom.); 2.08 (s, Me); 1.18–0.19 (m, 2 Bu).

[N-(Benzothiazol-2-yl)-*p*-chlorobenzamidinato]dibutylboron (5e). A mixture of 2-aminobenzothiazole **3** (0.3 g), Bu_3B (0.387 g), *p*-chlorobenzonitrile (0.79 g), and benzene (5 mL) was boiled for 3.5 h. Excess nitrile and the solvent were distilled off, and the residue was recrystallized from hexane. Yield of **5e** was 0.46 g (73 %), m.p. 120–121 °C. Found (%): C, 64.43; H, 6.74; B, 2.83; Cl, 8.41; S, 7.61. $\text{C}_{22}\text{H}_{27}\text{BClN}_3\text{S}$. Calculated (%): C, 64.21; H, 6.62; B, 2.68; Cl, 8.50; N, 10.22; S, 7.78. MS, m/z : 354 [M–Bu]⁺. IR, ν/cm^{-1} : 3400 (NH); 1550, 1490 (C=C, C=N). ¹¹B NMR, δ : 1.68. ¹H NMR [$(\text{CD}_3)_2\text{SO}$], δ : 8.62 (s, NH); 8.16 and 7.59 (both d, C_6H_4); 7.88 (d); 7.69 (d); 7.45 (t); 7.30 (t, 4 H arom.); 1.28–0.38 (m, 2 Bu).

[N-(Benzimidazol-2-yl)acetamidinato]dipropylboron hydrochloride (8). Chelate **5a** (0.54 g) was boiled in a 6 M solution (5 mL) of HCl in Bu^nOH for 1.5 h. The solvent was distilled off, and the residue was washed with hexane and recrystallized from acetonitrile. Hydrochloride **8** was obtained (0.52 g, 95 %), m.p. 224–226 °C. Found (%): C, 57.79; H, 7.64; B, 3.57; Cl, 11.41. $\text{C}_{15}\text{H}_{24}\text{BClN}_4$. Calculated (%): C, 58.78; H, 7.89; B, 3.60; Cl, 11.42. MS, m/z : 227 [M–Pr–HCl]⁺. IR, ν/cm^{-1} : 3395 (NH). ¹¹B NMR (THF), δ : 1.4.

N-(Benzothiazol-2-yl)-*p*-chlorobenzamidine (10). A mixture of **5e** (0.4 g), toluene (5 mL), and a 6 M solution of HCl in butanol (1 mL) was boiled for 3 h. The precipitate was filtered off, washed with benzene, and treated with a saturated solution of NaHCO_3 (5 mL). After stirring for 1.5 h, the precipitate was filtered off, washed with water, and dried

in vacuo over P_2O_5 . Compound **10** was obtained (0.25 g, 85 %) with m.p. 181–183 °C. Found (%): C, 58.14; H, 3.62; Cl, 12.40. $\text{C}_{14}\text{H}_{10}\text{ClN}_3\text{S}$. Calculated (%): C, 58.53; H, 3.50; Cl, 12.18; N, 14.64; S, 11.14. MS, m/z : 286 [M–H]⁺. IR, ν/cm^{-1} : 3490 (NH); 1630 (C=N). ¹H NMR [$(\text{CD}_3)_2\text{SO}$], δ : 10.19 and 9.23 (both br.s, 2 NH); 8.12 and 7.61 (both d, C_6H_4); 7.89–7.28 (m, 4 H arom.).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 94-03-08964).

References

1. V. A. Dorokhov, L. I. Lavrinovich, and B. M. Mikhailov, *Dokl. Akad. Nauk SSSR*, 1979, **245**, 121 [*Dokl. Chem.*, 1979, **245** (Engl. Transl.)].
2. V. A. Dorokhov, M. G. Kurella, M. O. Dekaprilevich, and L. G. Vorontsova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1987, 1373 [*Bull. Akad. Sci. USSR, Div. Chem. Sci.*, 1987, **36**, 1267 (Engl. Transl.)].
3. V. A. Dorokhov, B. M. Zolotarev, and B. M. Mikhailov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1981, 869 [*Bull. Akad. Sci. USSR, Div. Chem. Sci.*, 1981, **30** (Engl. Transl.)].
4. V. A. Dorokhov, A. R. Amamchyan, M. N. Bochkareva, I. A. Teslya, and Z. A. Starikova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1987, 165 [*Bull. Akad. Sci. USSR, Div. Chem. Sci.*, 1987, **36**, 147 (Engl. Transl.)].
5. V. A. Dorokhov, A. R. Amamchyan, Z. A. Starikova, and I. A. Teslya, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1987, 2049 [*Bull. Akad. Sci. USSR, Div. Chem. Sci.*, 1987, **36**, 1900 (Engl. Transl.)].
6. B. M. Mikhailov, V. A. Dorokhov, and V. I. Seredenko, *Dokl. Akad. Nauk SSSR*, 1971, **199**, 1328 [*Dokl. Chem.*, 1971, **199** (Engl. Transl.)].
7. B. M. Zolotarev, O. S. Chizhov, V. A. Dorokhov, L. I. Lavrinovich, and B. M. Mikhailov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1978, 1312 [*Bull. Akad. Sci. USSR, Div. Chem. Sci.*, 1978, **27**, 1140 (Engl. Transl.)].
8. V. A. Dorokhov, A. R. Amamchyan, and V. S. Bogdanov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1989, 2353 [*Bull. Akad. Sci. USSR, Div. Chem. Sci.*, 1989, **38**, 2165 (Engl. Transl.)].
9. V. A. Dorokhov, A. R. Amamchyan, V. S. Bogdanov, and T. A. Shchegoleva, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1987, 2622 [*Bull. Akad. Sci. USSR, Div. Chem. Sci.*, 1987, **36**, 2436 (Engl. Transl.)].

Received December 9, 1995